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Rapid determination of whether a candidate compound will bind
to a particular target receptor remains a stumbling block in drug
discovery. We use an approach inspired by random matrix theory
to decompose the known ligand set of a target in terms of orthogonal
“signals” of salient chemical features, and distinguish these from the
much larger set of ligand chemical features that are not relevant for
binding to that particular target receptor. After removing the noise
caused by finite sampling, we show that the similarity of an unknown
ligand to the remaining, cleaned chemical features is a robust predictor
of ligand–target affinity, performing as well or better than any algo-
rithm in the published literature. We interpret our algorithm as de-
riving a model for the binding energy between a target receptor and
the set of known ligands, where the underlying binding energy model
is related to the classic Ising model in statistical physics.

drug discovery | random matrix theory | protein–ligand affinity |
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Finding new ligands that bind to a given target is both a crucial
step and a major stumbling block in modern drug discovery.

Numerous attempts have been made to develop computational
algorithms to predict the binding affinity of a ligand to a given
receptor, which would allow potential compounds to be screened
in silico, reducing costs and saving time. In particular, in response
to the wealth of experimental data that exists both within phar-
maceutical companies, and also in freely accessible online da-
tabases such as ChEMBL (1), approaches that attempt to “learn”
from these data are increasingly gaining attention (2).
An intuitive data-driven approach builds on the hypothesis

that chemical commonalities among the known ligand set reveal
salient features of the binding site. A corollary is that ligands
with similar chemical functionality are expected to share similar
binding affinity toward a particular receptor (3, 4). This suggests
that the known ligand set of a given target can be used to learn
criteria that predict whether a novel ligand will bind to the target.
This ligand-based approach is a powerful paradigm that does not
require structural information about the receptor, which is po-
tentially arduous to obtain, unlike other more atomistic methods
such as docking or molecular dynamics.
Any ligand-based method requires a way to quantify the chemical

functionalities of a ligand, and various chemical descriptors have
been proposed. Examples include a vector of measured or predicted
physical properties (5–8), a vector enumerating the presence or
absence of known functional groups on the ligand (9, 10), a vectorial
representation of connectivities in the molecular graph (11, 12)
(known also as molecular fingerprints), and simply the 3D shape of
the ligand (13–16). Existing approaches then take the descriptor
associated with each ligand and compare ligands with each other,
for example through the Tanimoto coefficient (17, 18).
Nonetheless, regardless of how ligand chemical functionalities

are quantified, without fortuitously knowing a priori which ligand
features determine binding, most of the chemical features de-
scribing the ligand are likely irrelevant. Whereas some of the
features in the descriptor determine binding to the receptor of in-
terest, others do not and simply add background noise. Moreover,
for any particular receptor, the known set of ligands that bind to it
is often smaller, or of the same order of magnitude as the number
of potentially relevant chemical features. As such, the problem of

ligand-based binding prediction can be recast as a problem in
signal processing––can we identify those chemical ligand fea-
tures that determine binding (i.e., the “signal”) amid many ir-
relevant ones (the “noise”) in the regime where the amount of
data is not significantly larger than the number of variables being
measured?
Random matrix theory (RMT) provides a natural mathemat-

ical framework for addressing this issue. Physical applications of
RMT include Wigner’s study of the spectra of heavy atoms (19).
In the context of data analysis, RMT gives a null model for the
similarity between samples (ligands) that can be expected by
chance due to finite sampling (20). Powerful analytical tools from
RMT define a precise threshold that distinguishes the similarity
that can be expected by chance from that which is caused by signal.
These tools enable an effective and simple denoising algorithm,
which allows us to recover the statistically significant signals. This
denoising algorithm has been used in different fields, ranging from
finance (21–23) to face recognition (24, 25).
This article contains three major results: First, we show that

for a randomly chosen set of molecules, the eigenvalue distri-
bution of the covariance matrix of chemical descriptors agrees
with the canonical Marčenko–Pastur (MP) distribution (26) of
RMT, expected in the absence of any significant signal. Second,
if we consider descriptors of pharmacologically similar mole-
cules, i.e., those that bind to the same protein receptor, then part
of the eigenvalue spectrum agrees with the MP distribution, but
crucially there are eigenvalues that deviate from it significantly.
These eigenvalues, and their corresponding eigenvectors, de-
scribe the statistically significant signals. The most common
substructure of these eigenvectors corresponds to pharmaco-
phores. Using these two results, we can predict with higher ac-
curacy than known methods when an unknown ligand will bind
to a receptor, constructing a unique model for each protein re-
ceptor. Finally, we provide a physical interpretation of the success
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of the algorithm––namely, that it is effectively inferring a model of
the ligand–protein binding energy from the covariance structure
of fingerprints that bind to a target protein. The underlying
mathematical model is closely related to the classic Ising model in
statistical physics.

RMT Framework
To motivate the RMT framework, we focus on a popular set of
descriptors that are often used in cheminformatics. Molecular
fingerprints are typically constructed by first representing a li-
gand as a 2D molecular graph, and then considering all possible
bond paths within the molecule (11, 12). The set of bond paths
that characterize each molecule is unique, so that only identical
molecules share exactly the same bond paths; similar molecules
share most bond paths. Because the set of all possible bond paths
is vast, typically fingerprints are defined by first considering bond
paths that are below some threshold length (i.e., within some
radius of every atom of the structure) and then mapping these
bond paths to a bit string of defined length [a molecular “fin-
gerprint” (27)] through a hash function.
The fundamental aim is to detect similarity among a set of

binary strings of the same length, p, where each bit represents
the presence or absence of a molecular feature. There is sig-
nificant noise in these bit strings, because only some of the bits
are truly informative––for any particular receptor, not all bond
paths are equally relevant to ligand–target binding. If the indi-
vidual bits of the binary strings were chosen randomly, with no
information about ligand–target binding, then RMT predicts
that the eigenvalue distribution of the covariance matrix of the
bit strings obeys a specific analytical function known as the MP
distribution. Therefore, a highly accurate test for detecting the
presence of nonrandom commonalities among a set of strings is
to compare the eigenvalue spectrum of their covariance matrix
to the MP distribution. Any deviation necessarily reflects the
presence of a signal in the data, which in this case are sets of
molecular features that characterize the chosen ligand–target
interaction.
Mathematically, we represent the kth ligand associated with

the chosen receptor as a row vector of bits fk using the Morgan
fingerprint algorithm with radius 3, implemented using the package
rdKit (28). The ensemble of N ligands that bind to the chosen re-
ceptor can be arranged as a data matrix A= ½f1; f2⋯fN �∈RN×p,
where the value of N will vary between receptors. We then remove
repeated columns of the data matrix, which correspond to re-
dundant information, and convert the data matrix to z scores by
subtracting the column mean and normalizing each column to have
unit variance. This allows us to construct the N × N correlation
matrix C=ATA=N. In general, for well-sampled data, large entries
in C would indicate relationships between specific molecular fea-
tures, suggesting that these features do not occur independently of
one another in this dataset.

A fundamental result from random matrix theory describes the
eigenvalue distribution of the correlation matrix C analytically—
under certain weak assumptions, if entries in A are drawn from a
Gaussian distribution with zero mean and unit variance, the
probability of A having an eigenvalue λ is given by the MP distri-
bution (26)

ρðλÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih�
1+

ffiffiffi
γ

p �2 − λ
i
+ 

h
λ−

�
1− ffiffiffi

γ
p �2�i

+

r

2πγλ
, [1]

where γ = p=N describes how well-sampled the dataset is. The
probability that a random matrix has eigenvalues larger than
ð1+ ffiffiffi

γ
p Þ2 in the absence of any signal is vanishingly small. Thus,

the key insight gained from Eq. 1 is that those eigenvalues above
ð1+ ffiffiffi

γ
p Þ2 correspond to statistically significant signals.

Fig. 1A shows that the eigenvalue distribution of the correlation
matrix of 1,000 ligands drawn randomly from ChEMBL (1) agrees
quantitatively with the MP distribution. However, if instead we
choose the ligands nonrandomly, by choosing the ligand sets asso-
ciated with a particular protein receptor, we find a significant number
of eigenvalues above the MP threshold. As examples, Fig. 1 B and C
shows the eigenvalue distribution from ligand sets from ChEMBL
associated with two G protein coupled receptors, the adenosine A2a
receptor (AA2AR) and the β1-adrenergic receptor (ADRB1).
TheMP distribution thus suggests an intuitive denoising algorithm

for ligands that bind to a particular receptor: only eigenvectors with
eigenvalues larger than the MP upper bound correspond to statis-
tically significant features of the receptor; the other eigenvectors
simply reflect random noise caused by finite sampling. The set of
statistically significant features, represented as orthonormal eigen-
vectors, are thus orthogonal chemical features relevant for ligand
binding. In other words, if there are m eigenvalues greater than the
MP upper bound, then the linear space spanned by them associated
eigenvectors, V= spanðv1, v2,⋯vmÞ, is the subspace of chemical
feature space that facilitates binding to that particular receptor.

Classification of Unknown Ligands
Intuitively, if an unknown ligand is sufficiently similar to the set
of known ligands that bind to a receptor, the unknown ligand will
likely also bind to the receptor. The random matrix framework
gives a precise mathematical statement for this intuition: An
unknown ligand is predicted to bind to a receptor if the bit-string
vector corresponding to the unknown ligand (after transformation
to z score by subtracting the sample mean and normalizing by
sample variance) lies close to the subspace V.
Let u be the vector of z scores corresponding to the unknown

ligand. The projection of u onto V is given by

A CB

Fig. 1. MP distribution (red curve) provides the null hypothesis for ligand–ligand correlations expected in the absence of signal. The eigenvalue distribution is
plotted for the correlation matrix of (A) a random sample of 1,000 ligands from ChEMBL, and the ligand set of (B) AA2AR and (C) ADRB1.
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up =
Xm
i=1

ðvi · uÞvi. [2]

Here, u lies in the subspace V if and only if u=up. The distance
between u and up is thus a quantitative metric of similarity be-
tween the unknown ligand and the set of ligands that bind to the
receptor in question. The ligand is predicted to bind if and only if

��u− up
��< e, [3]

where k·k is the Euclidean norm, and e is a threshold parameter.
Eq. 3 has the chemical interpretation that one can be confident a
ligand will bind to the receptor if it contains pharmacophores found
in known ligands, and is minimally decorated with other functional
groups. A pharmacophore is typically a small fragment (see Fig. 4),
and the chemical properties of the resulting molecule will increas-
ingly deviate from those of the pharmacophore as one incorporates
additional functional groups. The threshold parameter e allows the
tolerance of the analysis to the presence of other functional groups
to be controlled, and hence an appropriate false positive/false neg-
ative tradeoff selected; this is discussed in detail below.
To test this, we consider human G protein coupled receptors

(GPCRs) reported in ChEMBL. A ligand is considered to bind to a
given target if its Ki, Kd, IC50, or EC50 is 1 μM or less. We consider
only GPCRs with more than 120 known ligands reported in ChEMBL.
We randomly sort ligands into a training set (80%) and a verification
set (20%). To test for false positives, we need compounds that do not
bind to the receptor. Negative results are seldom reported and the
judicious selection of decoys is still a subject of intense research effort
(29). In our analysis, we use a random selection of 1,000 compounds
from ChEMBL as a proxy. The median number of ligands associated
with each GPCR is ∼ 400; thus, even if the actual ligand set is an order
of magnitude larger than those that are known, it still represents a
negligible proportion of the 1,583,897 compounds in ChEMBL.
Therefore, a random selection of 1,000 ligands from ChEMBL is
unlikely to contain any ligand that binds to a particular GPCR.
The receiver operating characteristic (ROC) curve plots the

accuracy of identifying ligands (true positives) as a function of
false-positive predictions. This characteristic is commonly used
to quantify the performance of classification algorithms. In
particular, the area under the ROC (the so-called AUC) is the
crucial figure of merit: the closer the AUC is to 1, the better the
classifier. Fig. 2A shows that our algorithm has a mean AUC of
0.9, surpassing methods commonly used in the literature, which
have a mean AUC of 0.7− 0.8 (30). As such, our algorithm com-
fortably outperforms commonly used methods.

The ROC curve is plotted by varying e, the threshold parameter
in Eq. 3. Fig. 2B shows the effect of varying e, represented as the
percent of the training set accounted for by each choice of e. A
stringent choice of e corresponds to a large portion of the training
set being rejected by the threshold in Eq. 3, resulting in a low false-
positive rate but a high false-negative rate. Vice versa, an e value
that accounts for a larger portion of the training set has higher false-
positive rate but lower false-negative rate. In the remainder of this
paper, we choose e so that 95% of the training set lies within the
threshold in Eq. 3. With this heuristic choice, the algorithm picks out
84% of the verification set as ligands with a 7% false-positive rate
(i.e., it rejects 93% of randomly selected ligands from ChEMBL).
The random matrix distribution (Eq. 1) is crucial to the success of

our algorithm. Fig. 3 shows that including too many eigenvectors into V
increases the false-positive rate, whereas including too few eigenvec-
tors decreases the success rate of picking out ligands from the verifi-
cation set. The balance between overfitting and underfitting is achieved
close to the MP bound (as the bound is probabilistic, slight sample-to-
sample deviation is expected). Although Fig. 3 only shows the results
for AA2AR, ADRB1, the μ1 opioid receptor, and the cannabinoid
CB1 receptor, the near optimality of the MP bound is general.
We also report that the statistically significant eigenvectors

picked out by our algorithm represent pharmacophores. Formally, a
fingerprint cannot be inverted directly to give a unique chemical
structure because multiple structures can lead to the same finger-
print. Nonetheless we can infer the structural motif that an eigen-
vector represents by the common substructure among those ligands
that lie closest to that eigenvector. Fig. 4 shows the structural motif
corresponding to the top two eigenvalues of AA2AR and ADRB1.
Strikingly, the first eigenvector of AA2AR is precisely the adenine
motif. The second eigenvector contains a thymine motif fused to a
more complex scaffold. For ADRB1, the top eigenvector is the
structural motif of β-blockers (e.g., propranolol), a class of suc-
cessful antagonists which are used, e.g., to treat hypertension.

Physical Model
Before concluding, we address the question of why this algorithm
might prove effective.What is the physics encoded in those eigenvalues
larger than the MP threshold, and their associated eigenvectors?
The clearest way of determining which ligands bind to a given

protein would be to accurately predict the binding energy of every
possible ligand to the protein. The ligand set of the protein is then
given by the set of ligands with a binding affinity greater than some
threshold. Accurate determination of this binding energy is ex-
tremely computationally intensive. Nonetheless, even without a
first-principles determination of the ligand binding energy, we might
still hope to parameterize a model of protein–ligand binding, where
the parameters are determined from the set of ligands that bind to a
given protein target. If sufficiently accurate, such a model of the
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Fig. 2. Our RMT-inspired algorithm classifies ligands with high accuracy. (A) The ROC curve of our algorithm. The AUC of the mean ROC curve is 0.9. The
shaded region shows 1 SD in the true positive, corresponding to AUC = 0.86–0.95. (B) Accuracy at identifying ligands and rejecting decoys plotted as a
function of percent of the training set rejected by the choice of the threshold e.
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binding energy could potentially still give accurate predictions as to
which ligands bind to a given target protein.
We now demonstrate that there is a natural class of models for

ligand binding where our algorithm precisely picks out the set of
strongly binding ligands. To begin, we note that because we are
describing ligands through their fingerprints f, the ligand binding
energy is a function of the fingerprints, i.e., E=EðfÞ. We can
expand E in powers of f, so that to leading order

EðfÞ=
Xp
i=1

  wifi +
Xp
i, j=1

  fiJijfj + . . . . [4]

Here, wi and Jij are protein-specific quantities; they parameterize
how well ligands (characterized by their fingerprints) bind to the
binding pocket of the protein in question. The values of wi, Jij,
and p also depend on the nature of the fingerprints that we use to
describe the ligands. More detailed fingerprints have a better
chance of accurately modeling the binding energy between the li-
gand and receptor than those that do not take into account parts of
the molecule that bind to the receptor. The fact that the Morgan 3
fingerprints used herein have long been shown to have predictive
power for ligand–target association means that they plausibly
contain sufficient information to model the binding energy. It is
noteworthy that because fingerprints are binary strings of
length p, the model in Eq. 4 is equivalent to the Ising model,
well known in statistical physics.
Can we deduce w and J from the fingerprints of those ligands

that bind to a protein target? Here we take as input the correlation
matrix of the fingerprints that bind to each protein target in

question. Indeed, determining the Ising model interaction matrix
J from the correlation matrix is a classic problem in statistical
physics and biophysics (31–35). We now argue that our random-
matrix-based procedure effectively removes noise caused by
finite sampling from this problem. The essence of our algorithm
is the derivation of a protein-specific binding energy model J.
We can directly compute the correlation matrix of the fin-

gerprints that bind to a given protein target (characterized by
wi, Jij) by noting that our model implies that the equilibrium
probability of observing a fingerprint f is given by

PðfÞ= e−βEðfÞ

Z
, [5]

where β= ðkBTÞ−1 characterizes the temperature and Z is the
partition function, summing e−βE over all possible fingerprints.
The correlation matrix follows directly from this model via
Cij = hfifji− hfiihfji, where h·i denotes an average over the prob-
ability model in Eq. 5. The correlation matrix Cij is a function of
temperature T: at high temperatures, where βE � 1, all f are
equally probable, and the nontrivial correlations disappear. At
lower temperatures, the set of fingerprints that are probable will
reflect the structure of the interaction matrix J in Eq. 4.
Correspondingly, ligand–protein target binding only occurs

over a range of temperatures, and we assume that we are in the
range of temperatures where the binding is effective. Our algo-
rithm computes the correlation matrix Cij not from taking
equilibrium averages but instead by averaging over n samples,
where n is the number of ligands that bind to the target in
question. Critically, n is the same order of magnitude as the finger-
print length p, so our computed covariance matrix does not converge
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Fig. 3. MP bound strikes a balance between overfitting and underfitting. The percent accuracy in identifying ligands from the verification set and rejecting
ligands randomly selected from ChEMBL is shown as a function of the number of eigenvectors included in V for (A) AA2AR, (B) ADRB1, (C) μ1 opioid receptor,
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to the equilibrium expectation––it is corrupted by noise. Our pro-
cedure of extracting the eigenvalues above the MP threshold cor-
responds to estimating the binding energy from the data matrix.
To see this, Fig. 5 shows a set of simulations of the Ising model.

We consider fingerprints of length p= 50, drawn from the distri-
bution of Eq. 5. We take the first-order coefficients to vanish
(wi = 0; in the case of the fingerprints this corresponds to using the
z score) and choose J =−αu′JuJ, where α> 0. This is a rank-1 matrix,
where uJ is the (randomly chosen) direction that by construction will

minimize the energy. Fig. 5A shows the spectrum of the resulting
correlation matrix, formed by considering n= 200 samples from
Eq. 5 with βα= 0.1. The temperature is sufficiently high that the
fingerprints are uncorrelated, so the spectrum is well fit by the MP
distribution (red line). Fig. 5B shows the corresponding spectrum
of the correlation matrix when βα= 0.6. Here the bulk spectrum
agrees well with the MP distribution (red line), but there is a single
eigenvalue that escapes from the bulk with λ≈ 9. Fig. 5C shows that
the eigenvector corresponding to this eigenvalue is extremely well
correlated with uJ.
This correlation between the eigenvector and the coupling

matrix J gives a physical interpretation of the projection onto the
subspace of eigenvectors that escape the MP distribution in Eq. 2:
We have used the data to derive a model for the binding energy of
the ligand in fingerprint “coordinates,” and to determine whether
an arbitrary ligand binds to the target, we are simply evaluating
this binding energy. The correlation structure is lost when we use a
dataset of random ligands instead of those corresponding to a
single protein receptor, because in this case there is no underlying
energy model to learn. Although our simulations (Fig. 5) use a
rank-1 J for simplicity, if J is of higher rank, more eigenvectors will
be pushed outside the MP distribution. Indeed, ref. 36 showed
that random matrix denoising is related to putting in a prior that
the rank of J (in our case the number of independent pharma-
cophores) is less than the number of variables (2,048 for the
Morgan 3 fingerprint). We note that the Ising energy in Eq. 4
provides another way to score ligands. However, the classification
accuracy does not significantly improve if the energy is estimated
using the leading-order mean-field approximation (37).
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Fig. 5. Eigenvalue spectrum of n= 200 fingerprints of
length p= 50 sampled from PðλÞ in Eq. 5, with w = 0
and J=−αu′JuJ a rank-1 matrix described in the text.
(A) The spectrum with β  α= 0.1 agrees quantitatively
with the MP distribution (red line). At high tempera-
ture the covariance structure of J is irrelevant and the
fingerprints are uncorrelated up to sampling noise.
(B) The spectrum with β  α= 0.6 has a bulk that agrees
with the MP distribution (red line), but has a single
eigenvalue escape from the bulk, near λ≈ 9. (C) The
eigenvector v associated with this eigenvalue is highly
correlated with uJ, the direction of J.
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Although interpreting our algorithm in terms of a binding en-
ergy function requires experimental verification through binding
energy measurements, we note that this interpretation offers
several conceptual insights. First, new candidate compounds could
be uncovered by exploring the potential energy landscape of Eq. 4,
and jumping between different energy minima could be related to
“scaffold hopping” in drug discovery (38) as the minima would
correspond to structures with pharmacophores. Investigating the
topology of the energy landscape and those paths that connect
distinct basins (39), as well as the statistics of energy minima, could
reveal properties of the binding site. Secondly, relating our algo-
rithm to an interaction energy provides a way to extend our
method to regression problems, such as predicting solubility (40).
Third, we note that chemical fingerprints may be improved by

incorporating physically relevant terms such as charge and mo-
lecular volume. This is facilitated by our approach, which accounts
for additional noise introduced by increasing the number of fin-
gerprint variables. Finally, the binding energy interpretation
highlights the importance of high-quality negative data, i.e., which
molecules do not bind to the desired receptor. Ref. 36 shows that
including repulsive patterns could improve high-dimensional in-
ference with inverse Ising/Hopfield models. Empirically, for our
system, the repulsive patterns (small eigenvalues) inferred from
the data are noisy and uninformative. This can be addressed either
through identification of many more ligands that bind to each
protein receptor, or, perhaps more efficiently, the incorporation of
negative data into this framework.

Conclusion
We have developed a classification algorithm that predicts
whether a compound will bind to a particular receptor of interest,
given the known ligand set of that receptor. Our algorithm de-
composes signal from noise using a robust bound that is derived
from RMT. Applying our approach to human GPCRs reported in
ChEMBL successfully identifies 84% of known ligands with a 7%
false-positive rate, yielding an average AUC of 0.9. The method-
ology developed here complements the vast literature on optimizing
fingerprint design, for example through the use of high-throughput
screening data (7) or through application of neural networks to
molecular graphs (41). The random matrix framework described
here provides a robust threshold for maximizing the information
extracted from correlations between structural features, while
avoiding overfitting the data. The algorithm has the natural inter-
pretation as a data-driven model for the binding energy of the li-
gands to the target protein, in fingerprint coordinates. This model
gives a different perspective on the validity and uses chemical
fingerprints for both ligand binding predictions and other pur-
poses such as predicting ligand solubility (40) or aggregation (42),
as well as revealing insights in fingerprint design.
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